Congratulations to Valentin, Tyler and Prof. Ping, for their recent publication in Chemistry of Materials!
Perovskite-type lanthanum iron oxide, LaFeO3, is a p-type semiconductor that can achieve overall water splitting using visible light while maintaining photostability. These features make LaFeO3 a promising photocathode candidate for various photoelectrochemical cells. Currently, the photoelectrochemical performance of a LaFeO3 photocathode is mainly limited by considerable bulk electron–hole recombination. This study reports a combined theoretical and experimental investigation on the atomic doping of LaFeO3, in particular, substitutional doping of La3+ with K+, to increase its charge-transport properties and decrease electron–hole recombination. The computational results show that K-doping enhances not only the charge-transport properties but also photon absorption below the bandgap energy of the pristine LaFeO3. Link to the full article here.